

Nuclear Energy

Behavior of Zirconium Oxide and Zirconium Metal in a LiCI-Li₂O-Based Electrolytic Reduction System

S. D. Herrmann, L. A. Wurth, N. J. Gese

August 27, 2012

2012 International Pyroprocessing Research Conference

The Abbey Resort Fontana, Wisconsin

Introduction

Nuclear Energy

Background

- An electrometallurgical treatment process has been operating since 1996 to treat 25 MTHM of sodium-bonded uranium metal blanket and uranium metal alloy driver fuel from Experimental Breeder Reactor – II (EBR-II) at Idaho National Laboratory's Fuel Conditioning Facility.
- In the course of retrieving EBR-II spent driver fuel for treatment, a significant quantity of degraded U-10Zr spent fuels, i.e., breached fuel exposed to air, has accumulated since 1996.
- As oxidized material, it would require head-end treatment prior to electrorefining.
- Electrolytic reduction is a candidate head-end treatment process that could facilitate subsequent electrorefining.
- However, degraded U-10Zr would introduce significant quantities of partially to fully oxidized zirconium into a LiCl-Li₂O electrolytic reduction system at 650 ° C, in which the behavior of zirconium oxide and zirconium metal is not well defined.

Degraded EBR-II fuel element

Test Objectives and Approach

Nuclear Energy

Objectives

- Define behavior of zirconium oxide and zirconium metal in LiCl-Li₂O at 650 ° C.
- Determine whether or not zirconium oxide can be reduced to metal in a LiCl-Li₂O electrolytic reduction system.

Approach

- Contact zirconium oxide and zirconium metal separately in LiCl-Li₂O at 650 ° C and assess behavior (without electric potential).
- Perform bench-scale electrolytic reduction of MnO particulate (surrogate for UO₂) and MnO-ZrO₂ particulate blend and assess behavior (with electric potential).

No.	Test Conditions		
1	ZrO ₂ particulate addition to LiCl-Li ₂ O at 650 °C		
2	Zr metal wire immersion in LiCl-Li ₂ O at 650 °C		
3	Zr metal particulate addition to LiCl-Li ₂ O at 650 °C		
4	Electrolytic reduction of MnO particulate in LiCl-Li ₂ O at 650 °C		
5	Electrolytic reduction of MnO-ZrO ₂ particulate in LiCl-Li ₂ O at 650 °C		

Technical Basis

Nuclear Energy

■ Thermodynamic Stabilities*

Compound	ΔG _f at 650 °C (kJ / mol O)	ΔG _f at 650 °C (kJ / mol Cl)	E° (V)
MnO	-317.21		1.64
ZrO_2	-461.95		2.39
UO_2	-462.65		2.40
Li ₂ O	-475.73		2.47
Li ₂ ZrO ₃	-488.49		2.53
LiCI		-333.71	3.46

■ Possible Reaction Mechanisms*

-
$$ZrO_2$$
 + Li_2O → Li_2ZrO_3 (Δ $G_{f, 650C}$ = -66 kJ)

- Zr + 3 Li₂O → Li₂ZrO₃ + 4 Li (
$$\Delta$$
G_{f, 650C} = -38 kJ)

Equipment and Materials

Nuclear Energy

■ Solid – Liquid Contacting

- Jeweler furnace (650 ° C)
- Argon atmosphere glovebox
- 2.5 cm dia. x 10 cm MgO crucible (~50 ml)
- 36 50 g LiCl (AAPL, 99.99+%, anhydrous)
- 3.5 wt% Li₂O (Alfa Aesar, 99.5%)

Electrolytic Reduction

- Molten Salt Furnace II (650 ° C)
- Same argon atmosphere glovebox
- 10 cm dia. x 11 cm MgO crucible (~500 ml)
- 750 g LiCl (AAPL, 99.99+%, anhydrous)
- 1 wt% Li₂O (Alfa Aesar, 99.5%)
- Ni/NiO reference electrode

ZrO₂ in LiCI-Li₂O Test (no. 1)

Nuclear Energy

■ Procedure

- Prepared LiCl 3.5 wt% Li₂O (35.76 g LiCl, 1.29 g Li₂O)
- Added 4.58 g ZrO₂ particulate (Alfa Aesar, 99%)
- Took time-at-temperature salt samples over 26-hr period
- Analyzed salt samples for Li₂O concentration.
- Performed XRD on post-test solid phase particulate.

Pre- and post-test crucible loadings

ZrO₂ in LiCI-Li₂O Test Results (no. 1)

Nuclear Energy

Li₂O concentrations in time-attemperature salt samples via water dissolution and titration

XRD analysis of solid particulate phase

Zr Wire in LiCI-Li₂O Test (no. 2)

Nuclear Energy

■ Procedure

- Prepared LiCl 3.5 wt% Li₂O (49.43 g LiCl, 1.79 g Li₂O)
- Immersed 1 mm dia. Zr wire to 7 cm depth.
- Held wire at temperature for 72 hours.
- Performed SEM on post-test wire.

Pre-test materials

Comparison of post-test crucibles from test 1 (left) and test 2 (right)

Zr Wire in LiCI-Li₂O Test Results (no. 2)

Nuclear Energy

- Visual and SEM images of post-test Zr wire
- Observed 28% reduction in cross-sectional area of wire.

Zr Metal Particulate in LiCI-Li₂O (no. 3)

Nuclear Energy

Procedure

- Heated 36.63 g of LiCl and 1.15 g of Zr metal particulate (CERAC, 99.8%, -140, +325) to 650 ° C and held for 24 hours
- Observed colorless salt and no color change to MgO crucible after 24 hours
- Added 1.33 g Li₂O to create a LiCl 3.5 wt% Li₂O solution
- Observed darkening of salt within first hour of Li₂O addition
- Took time-at-temperature salt samples over 48-hr period
- Analyzed salt samples for Li₂O concentration.
- Performed XRD on post-test solid phase particulate.

wire mesh ladle used to remove post-test solid phase particulate sample

Nuclear Energy

Zr Metal Particulate in LiCl-Li₂O Test Results (no. 3)

- Li₂O concentrations in time-attemperature salt samples via water dissolution and titration
- Plot shows comparison of Li₂O depletion between ZrO₂ and Zr metal particulate additions
- Observed fizzing upon dissolution of salt samples following Zr metal addition, but not ZrO₂

XRD analysis of solid particulate phase

Electrolytic Reduction – Operating Conditions

■ Operating Conditions in Molten Salt Furnace – II

- Electrolyte: LiCl 1 wt% Li₂O, 650 ° C, ~ 500 ml
 - Loaded magnesia crucible with 750 g LiCl
 - Loaded Li₂O incrementally to produce 0, 0.5 and 1 wt% Li₂O concentrations in LiCl
- Cathode: Stainless steel wire mesh basket (1.9 cm dia. x 7.6 cm, 325 mesh)
- Anode: 1 mm dia. Pt wire, spiral wound, 10 cm²
- Reference Electrode: Ni/NiO in magnesia tube with porous end plug
- Power Supply: Biologic VSP

■ Procedure

- Performed cyclic voltammetry in molten salt with stainless steel and platinum working electrodes, Mo-wire coil counter electrode, and Ni/NiO reference electrode.
- Performed electrolytic reduction of MnO particulate (27.53 g) followed by blended MnO-ZrO₂ particulate (17.94 g and 9.07 g, respectively) in same salt.

blended MnO (dark) and ZrO₂ (white) particulate

Electrolytic Reduction – Cyclic Voltammetry

Nuclear Energy

Pt wire working electrode

SST wire working electrode

Electrolytic Reduction – Cyclic Voltammetry (cont.)

MnO loaded SST wire mesh basket as working electrode

Electrolytic Reduction of MnO – Response Plot (Test 4)

Electrolytic Reduction of MnO/ZrO₂ – Response Plot (Test 5)

Electrolytic Reduction – Post-Test Observations and Analysis

Basket section of reduced MnO particulate (test 4)

- Basket section of reduced MnO-ZrO₂ particulate (test 5)
- 73% of Mn and 9.6% of Zr observed in metal phase via ethyl-acetate / bromine dissolution method

Summary and Conclusions

Nuclear Energy

■ Solid – Liquid Contacting Tests

ZrO₂ addition to LiCl-Li₂O at 650 ° C exhibited rapid Li₂O depletion and Li₂ZrO₃ formation, consistent with the following thermodynamically favored mechanism.

•
$$ZrO_2 + Li_2O \rightarrow Li_2ZrO_3$$
 $(\Delta G_{f. 650C} = -66 \text{ kJ})$

Zr metal (wire and particulate) additions to LiCl-Li₂O at 650 ° C exhibited Li₂O depletion along with Li₂ZrO₃ and Li metal formation, consistent with the following thermodynamically favored mechanism.

•
$$Zr + 3 Li_2O \rightarrow Li_2ZrO_3 + 4 Li$$
 $(\Delta G_{f. 650C} = -38 kJ)$

■ Electrolytic Reduction Tests

 Electrolytic reduction of MnO particulate and blended MnO – ZrO₂ particulate showed substantial reduction of Mn, but little reduction of Zr.

Conclusion

 LiCl-Li₂O-based electrolytic reduction is ineffective at substantially reducing zirconium oxide due to the thermodynamically favored lithium zirconate formation.

Implications

Nuclear Energy

- While electrolytic reduction of oxidized EBR-II U-10Zr fuel in LiCI-Li₂O at 650 ° C may be effective at uranium reduction to support subsequent electrorefining, the presence of lithium zirconate could interfere with the electrorefining of uranium.
- Similarly, the introduction of Zircaloy cladding from light water reactor fuel to an integrated electrolytic reduction and electrorefining process could be problematic.